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Larger-scale ocean-atmospheric 
patterns drive synergistic variability 
and world-wide volatility of wheat 
yields
Ehsan Najafi   1,4, Indrani Pal   2,3* & Reza Khanbilvardi1,2

Diagnosing potential predictability of global crop yields in the near term is of utmost importance for 
ensuring food supply and preventing socio-economic consequences. Previous studies suggest that a 
substantial proportion of global wheat yield variability depends on local climate and larger-scale ocean-
atmospheric patterns. The science is however at its infancy to address whether synergistic variability 
and volatility (major departure from the normal) of multi-national crop yields can be potentially 
predicted by larger-scale climate drivers. Here, using observed data on wheat yields for 85 producing 
countries and climate variability from 1961–2013, we diagnose that wheat yields vary synergistically 
across key producing nations and can also be concurrently volatile, as a function of shared larger-scale 
climate drivers. We use a statistical approach called robust Principal Component Analysis (rPCA), to 
decouple and quantify the leading modes (PC) of global wheat yield variability where the top four 
PCs explain nearly 33% of the total variance. Diagnostics of PC1 indicate previous year’s local Air 
Temperature variability being the primary influence and the tropical Pacific Ocean being the most 
dominating larger-scale climate stimulus. Results also demonstrate that world-wide yield volatility 
has become more common in the current most decades, associating with warmer northern Pacific and 
Atlantic oceans, leading mostly to global supply shortages. As the world warms and extreme weather 
events become more common, this diagnostic analysis provides convincing evidence that concurrent 
variability and world-wide volatility of wheat yields can potentially be predicted, which has major socio-
economic and commercial importance at the global scale, underscoring the urgency of common options 
in managing climate risk.

Wheat accounts for around 20% of the calories that humans consume and as such is the leading source of 
plant protein. It is well-known that wheat productivity is sensitive to both natural climate variability and 
extreme weather1–10. As a result, extreme weather disasters such as heatwaves, droughts, floods, cold spells, 
and the co-occurrence of compound extremes (e.g. hot and dry spell events) have caused significant produc-
tion losses11–14. The relationships between climate, wheat production variability and stability, and socioeco-
nomic outcomes has received growing attention recently7,10,14–17. Separate lines of evidence indicate that weather 
extremes across the globe can occur concurrently, due to mutual larger-scale climate drivers18–20, and that such 
larger-scale drivers influence global and regional crop productivity7,10,21–29. While agricultural influence of cli-
mate is well-established1–17,21–29, a detailed account of the characteristics of synergistic multi-national variability 
and world-wide volatility of crop yields, whereby many countries undergo harmonizing influences of climate to 
thwart or facilitate wheat productivity, needs more attension10.

History indicates that such synchronous volatility-led wheat yield losses can leave major ramification for 
global price and food security. Taken for instance, two crop-years: 1998–1999 and 2007–08 (Figs. 1 and S1). 
1998–99 had one of the lowest and 2007–08 the highest global wheat prices in the recent history of the data 
(not shown), and 2007–08 was also one of the most yield volatile years characterized by the higher number of 
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wheat-producing nations concurrently experiencing much below normal yields. On the other hand, 1999’s lowest 
price was notably accompanied by supply surpluses (Figs. 1 and S1), fewer number of droughts, fewer incidences 
of flooding events (red triangles), and closer to normal air temperature conditions over the key wheat growing 
croplands in 1998–1999 (Fig. 1). 2007–2008, instead, experienced producers largely reporting yield losses and 
supply shortages (Figs. 1 and S1), larger number of co-occurring extreme weather events such as droughts across 
Australia, eastern and southeastern Asia, and Europe, heatwaves in the USA, and floods in India and a range of 
African nations (Fig. 1). 2007–08, as a result, was one of the most yield volatile years in recent record (section SM1 
in supplementary text provides more details on associated socio-economic implications).

Yet, we agree with Mehrabi & Ramankutti7, Anderson et al.10 and Gutierrez16 that existing science is still 
at its infancy to clearly diagnose and quantify the importance of systematic global-scale mechanisms (climate 
inclusive) by means of which multiple wheat producing nations “concurrently” encountered similar or opposite 
responses in wheat yields, leaving substantial impacts on modern-day international markets or synchronized 
global crop failure in the history10. Larger-scale climate drivers have the ability to exemplify variability of multiple 
regional crop productivity10,21–24, as they influence the world-wide climates18–20. The most popular ones include 
El-Nino Southern Oscillation (ENSO) cycles, Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO), 
and Scandinavian Pattern (SCA). Still, in what way one or more of such drivers influence a specific mode of 
world-wide yield variability or volatility characteristics in multiple nations, needs further attention from recent 
discoveries7,10. Hence, it is crucial to (i) decouple and quantify the leading modes of global yield variability, (ii) 
diagnose each principal mode based on country-specific local as well as larger-scale climate drivers, facilitating 
potential predictability assessment, (iii) investigate possible climate connections to world-wide yield-volatility 
trends - which sets the basis for this study.

Figure 1.  Maps highlighting countries (in thicker boundaries) where wheat yield anomalies (high or low) 
occurred across the globe, showing co-occurring local climate conditions and societal conflicts in years (a) 
1998–1999 and (b) 2007–2008. Major producing countries having surplus yields (in 1998) or deficit yields 
(in 2007) are contoured in black colors. Countries having decreased imports (exports) in 1999 (2008) are 
designated by purple (green) circles in a (b). Reported food-related riots and/or crisis locations are marked 
by solid black squares (in a & b). Croplands experiencing extreme flooding incidence with more than 
100,000 Km2 area are marked by red triangles (a & b). Colored grid points depict annual PDSI anomalies 
over croplands where negative (positive) indicating drier (wetter) conditions (a,b). (c) Map showing the 
differences in average local growing season Air Temperatures between 2007 and 1998. (d) Map showing the 
differences in the number of days within the growing seasons of 2007–08 and 1998–99 experiencing higher 
than 30-degree Celsius temperature. Please note that, a & b consider irrigated + rainfed (MIRCA2000)68 
wheat growing fields while c & d locations showing areas where growing season information was available 
(SAGE)49. Food-related riots data was collected from the World Bank (https://www.worldbank.org/content/
dam/Worldbank/document/Poverty%20documents/Introduction%20Guide%20for%20the%20Food%20
Riot%20Radar.pdf.) (figure generated using R (http://www.R-project.org/) version R 3.4.2, ggplot2 (https://
cran.r-project.org/web/packages/ggplot2/index.html) and Adobe Photoshop CS6 (https://www.adobe.com/
products/photoshop.html).
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Results
Leading modes of world-wide wheat yield variability.  Using standardized global yield data for eighty-
five countries (section SM2 in supplementary text) and rPCA method30 (section SM3 and Fig. S2) we decoupled 
and quantified unique modes of world-wide yield variability in every principal component (PC) (Fig. S3). Those 
eighty-five wheat-producing countries account for nearly 83% of total global wheat production (according to 
2013 statistics), but, the top ten PCs explained ~67% variance of global yields and the first four 33% (Fig. S3). 
Each PC implied a specific synergistic variability pattern in global yields wherein several producing nations con-
tributed jointly in a variety of proportions (more in section SM4 in supplementary text). Figures 2 and S4 marked 
only those countries by thick orange/blue borders, which had high loading values (histograms of all loading 
values corresponding to 85 countries are shown in Fig. S6 and country names are in Table S1), designating coun-
tries participating in synergistic variability in yields. Countries corresponding to PC1 group (PCon1), included 
Nepal, Syria, DR Congo, Kenya, Niger, Tanzania, Tunisia, Austria, Bulgaria, Denmark, France, Germany, Greece, 
Hungary, Portugal, Romania, Sweden, Switzerland, Bolivia, Ecuador, Paraguay, Venezuela and New Caledonia, 
(Table S1, Fig. 2), several of which are major producing-, exporting-, and importing-nations (marked in Table S1). 
Section SM5 in supplementary text provides additional details of the countries exerting synergistic variability in 
global yields within PC2-4.

Spearman rank correlations between each PC and national-level yield variability provided indication on the 
extent to which each PC elucidated a national yield variance or vice versa (Table S2 and Fig. S7). We found that, 
while PC1 captured only about 10.5% year-on-year variance in world-wide wheat yields, it explained up to 74% 
variance in national yields (e.g. Romania was among the highest at 74% variance i.e. rank correlation equal to 
0.86 and Syria was the lowest at 4% variance or rank correlation equal to 0.20, Table S2). Likewise, PC2 captured 
nearly 8% year-on-year variability in global yields, but explaining up to 58% variance in national yields (Australia 
was the highest at 58% or rank correlation equal to 0.76). Similarly, PC3 captured closer to 7.5% variance in 

Figure 2.  The concurrent year (and one-year-lagged) Spearman rank correlations between each PC time series, 
and climate variability. Palmar Drought Severity Index (PDSI) and Air Temperature anomalies (ATa) indicate 
local climate variability while Sea Surface Temperature anomalies (SSTa) indicate global ocean-atmospheric 
patterns. The locations with statistically significant correlations at the 95% levels are designated as small black 
dots over wheat cropland areas while the same over the global oceans are indicated by colors. The orange and 
blue colored country boundaries indicate nations with high concurrent variability in yields that is designated 
by high loading values within corresponding PC (Fig. S6). We label them as PCon# where # is the PC number 
(Table S1). It is important to note here that we kept all the regions growing irrigated and rainfed wheat for local 
climate analysis, irrespective of many those didn’t make it to our list of 85 countries considered in yield analysis 
(SM2 & SM14). (figure generated using R (http://www.R-project.org/) version R 3.4.2, ggplot2 (https://cran.r-
project.org/web/packages/ggplot2/index.html) and Adobe Photoshop CS6 (https://www.adobe.com/products/
photoshop.html).
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global yields, but explained up to 55% national yield variance (rank correlation 0.74), and PC4 captured about 7% 
year-to-year variability in global yields, but explained up to 51% national yield variance (rank correlation 0.72). 
We have provided more details on all participating countries in Table S2 and Fig. S7.

Altogether, 33% global yield variability was captured by the first four PCs but each PC explained a much 
higher proportion of variance in individual national yields, providing confidence in potential predictability of 
multiple national wheat yields at a time.

Local and larger-scale climate drivers provide diagnostic evidence of potential predictability 
of the leading PCs.  Spearman rank correlation analysis between each PC and climate variability (data dis-
cussed in sections SM6-10 in supplementary text) indicated statistically significant influence of concurrent and 
previous-year’s climate drivers at the local and larger-scales. Within PC1 group of nations (Fig. 2, Table S1), 
Austria, Bulgaria, Denmark, France, Germany, Romania, and Paraguay were the leading producer and/or 
-exporter and/or -importers (method to choose country ranks is discussed in section SM11) whose wheat grow-
ing croplands (data discussed in SM13-14) indicated significant correlations between air temperature anomaly 
(ATa) in the previous year and PC1 (Figs. 2, S8 and S9). Such lagged correlation patterns provide fairly good indi-
cation of potential predictability of PC1 and with that multi-national crop yield variability (Figs. S8 and S9). For 
the sake of convenience, we designate these countries as hPCon1 (Fig. S9), which are also marked by * in Table S1. 
Some croplands within hPCon1 were also influenced by concurrent-year Palmer Drought Severity Index (PDSI) 
variability, but to a lesser degree (indicating the secondary influence of moisture in Denmark, France, Germany, 
and Paraguay). Altogether, nearly 3.7 million ha of wheat growing croplands within hPCon1 indicated statistically 
significant influence of local climate variability on world-wide wheat yield variability (as the synergy was captured 
in PC1), which was about 22.3% of the total wheat cropland areas within PCon1 nations, while nearly 32.6% fell 
within hPCon1’s wheat growing croplands.

In a similar manner, within hPCon2, the total growing area indicating concurrent influence of local climate 
on world-wide yield variability captured in PC2 was about 5-fold to that of PC1, which was nearly 18.2 million 
ha or ~32.4% and 38.5% respectively of the total wheat growing area falling within PCon2 and hPCon2 nations. 
Concurrent-year-average PDSI was the most dominating climate factor and second to that was lagged-ATa 
(Figs. S8 and S9). The same for hPCon3 were concurrent-year-average ATa where a total of 3.9 million ha of lands 
showed statistically significant correlations between concurrent local climate variability and PC3 scores, which 
was about 6.1% and 6.8% respectively of the total wheat-growing croplands falling within PCon3 and hPCon3 
nations. hPCon4 group, on the other hand, indicated various degrees of influence by the different climate indica-
tors, such as, concurrent-year’s average ATa in France, concurrent-year average PDSI in Germany, previous- and 
concurrent-year’s average PDSI in Spain and India, previous year’s average PDSI in Canada, and both lagged-ATa 
and concurrent-year average PDSI in Japan. It was about 3.2 million ha of croplands within hPCon4 or 6.9% and 
7.1% respectively of the total wheat growing areas within PCon4 and hPCon4 nations indicated some degree of 
local climate influence on PC4.

Taken all together and considering the overlapping areas, there was around 78 million ha or 47% of 
the wheat-growing croplands globally experiencing some degree of local climate influence on synergistic yield 
variability within the eighty-five producing countries, and within them, nearly 29 million ha falling within the 
leading producers/exporters/importers.

Statistically significant correlations between each PC and the global sea surface temperature anomalies (SSTa) 
indicated systematic response of global wheat yield variability to the larger-scale climate variability (Fig. 2). The 
robustness of these SST correlations, indicating larger-scale influence, was further substantiated by a series of par-
allel correlation analysis using a range of standard ocean-atmospheric indices (data in SM10). Results altogether 
indicated that, there were several clusters of regions over the global oceans showing statistically significant corre-
lations with the PCs (Figs. 2 and S4). The most notable one was the equatorial Pacific Ocean displaying a prom-
inent ENSO-type pattern corresponding to PC1, at one-year lag. For PC2 also, the SSTa cluster over the tropical 
western Pacific and eastern Indian Oceans, around the Maritime continents and adjacent to northern Australia 
was significant. Existing literature indicated that the tropical Pacific’s ENSO is a primary driver of global climate 
variability18–20, influencing several croplands across the world10,21,22; but using different approach and datasets our 
analysis confirms that the tropical Pacific SST can explain two leading modes of world-wide wheat yield varia-
bility and beyond. This finding was further substantiated by another set of findings shown in Table S3 indicating 
that ENSO indices, peaking mostly in winter (December-January-February), associate best with PC1 variability, 
and to an opposite manner with PC2. There was also minor level of associations between PC1 and North Atlantic 
Oscillation (NAO); PC2 with the Scandinavian Pattern (SCA); PC3 with the Western Pacific (WP) pattern; and 
PC4 with the Tropical Southern Atlantic (TSA) pattern. Arguably, other physical climate indicators exist that pos-
sibly links with individual regional yields, such as, Indian Ocean Dipole pattern (IOD)10 and Southern Annular 
Mode (SAM) for Australia24 but country-wise diagnostic analysis was outside the scope of our study.

Characteristics of world-wide yield volatility.  Most yield Volatile Years (MVY) and Least yield Volatile 
Years (LVY) (method to pick these years was discussed in SM12 in supplementary text, and Fig. S10) indicate 
the highest and the lowest incidence of world-wide wheat yield volatility (Tables S4 and S5). Five of the top ten 
MVYs occurred in the recent most decades (Fig. S11, Table S4) while the same period of time only observed two 
LVYs (Fig. S11, Table S5). Volatility refers to yield spikes in both direction, that can be positive or negative, but in 
this case, we discovered that, MVY, in general, are mostly associated with world-wide grain shortages while LVY 
surpluses. There were about 10% reduction in wheat production, on average, during MVY, from the preceding 
year, which almost entirely came from the top yield volatile nations (Table S4), leading largely to total losses of 
483 million tons of cereals. 2007 was the second highest MVY in record (status shown in Fig. 1 also), only after 
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1977 (Table S4). Paraguay, Austria, Australia, Turkey, and Argentina were some of the prominent wheat producers 
demonstrating highest degrees of yield volatility in the history.

We further used a composite analysis approach, also called Superposed Epoch Analysis (SEA) (a method 
earlier used in the field11), to examine concurrent local and global climatic conditions during MVY and LVY 
(Figs. 3 and 4). The results were unforeseen and indicated a range of global patterns those were not found earlier 
in Fig. 2. These implied that larger-scale drivers associating with systematic world-wide wheat yield variability 
may differ from those inducing concurrent volatility. During MVY, in general, there were significantly higher 
number of extreme events happening all across the globe: for instance, concurrent drier and hotter conditions 
in Canada, the USA, Europe, and China; wetter conditions in Australia, western and northern Europe, India 
and Pakistan; and colder conditions in Australia, DR Congo, and Japan, among the most notable ones. As such, 

Figure 3.  Composite maps of local and larger-scale climate drivers during the MVY and LVY years; (a1) SSTa 
and PDSI composites in the MVY years; (a2) the same in (a1) but at one-year lag; (a3) SSTa + PDSI composites 
in the LVY years; (a4) the same in (a3) but at one-year lag; (b1) ATa in MVY years; (b2) the same in (b1) but 
at one-year lag; (b3) ATa in LVY years; (b4) the same in (b3) but at one-year lag. The statistically significant 
locations over the croplands and oceans are marked by small black squares. Statistical significance was assessed 
by bootstrapping the anomalies (α = 0.1, 500 repetitions) at every grid cell. Countries with a greater number 
of large sparse yield values (#years) during the MVY/LVY, are represented by thicker boundaries in a1 and 
a3; Countries that are not in the scope of this study are highlighted as gray. Drier (wetter) conditions are 
indicated by large negative (positive) PDSI and hotter (cooler) conditions by large positive (negative) ATa. 
(figure generated using R (http://www.R-project.org/) version R 3.4.2, ggplot2 (https://cran.r-project.org/web/
packages/ggplot2/index.html) and Adobe Photoshop CS6 (https://www.adobe.com/products/photoshop.html).
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these leading producers- and/or exporters not only reported domestic wheat yield losses but also contributed to 
massive world-wide grain shortages.

Using the same SEA method, we further found that MVY followed years when the global oceans in the north-
ern Hemisphere were warmer on average (Fig. 3-a2), along with a significant see-saw-like SSTa pattern over the 
northern Pacific and adjacent to Alaska (Fig. 3-a1), a warmer blob over northwestern Atlantic (Fig. 3-a2), and 
a NAO-like feature observed over the northern Atlantic (Fig. 4-a1). The PDSI composites in Fig. 3 a1 & a2also 
support expected teleconnections from the NAO-like feature, as one would expect, as wheat is primarily moisture 
limited in Spain and North Africa (-ve PDSI) and the NAO affect wheat yields in these regions by altering mois-
ture availability10, while in central Europe and Scandinavia the temperature teleconnection is generally stronger 
(Fig. 3-b1,b2). During LVY, on the other hand, we observed a horseshoe-shaped patch of warmer water in the 
northern Pacific shifting its position towards the eastern side of the basin while a cooler patch almost disappear-
ing from the north-eastern Pacific (adjacent to the western USA) going from MVY to LVY (Fig. 3-a3, a4). The 
global oceans followed a much cooler trend during LVY with the most notable cooling feature occurring over the 
northern Atlantic (both during concurrent year and previous year) (Fig. 3-a3,a4). A cooler central and eastern 
Pacific Ocean (ENSO region) was significant during LVY (Fig. 3-a4), (adjacent to South America). Hence, it was 
most interesting to note that while ENSO explained primary modes of variability in world-wide wheat yields 
(Fig. 2), it became much lesser of significance for the most volatile years and yield losses across the world. Rather, 
a La-Nina type feature showed up during least volatile years. A direct composite analysis with the same indices as 
in Table S3 also confirmed that there was no significant feature of the El-Nino cycle co-developing within MVY. 
Instead, there were other ocean-atmospheric patterns indicating co-occurrence over the global oceans during the 
MVY and LVY. Examples of those patterns included negative winter-time NAO (−0.34), negative SCP (−0.28), 
and positive SAM (0.27) co-occurring with MVY; while winter-time negative PNA, and negative Quasi-Biennial 
Oscillation patterns (−2.2) co-occurring during LVY, but these findings are preliminary and hence warrant a 
more in-depth analysis for confirming physical significance10.

Comparison with existing literature.  Previous studies suggested that wheat yields depend on local climate  
variability6,11, and are influenced by larger-scale ocean-atmospheric patterns10,21,22. The recent research is how-
ever gradually addressing7,10 (our study inclusive), how and to what extent multiple national wheat yields vary 
synergistically10 and be concurrently volatile7 where local and larger-scale climate dynamically play a central role. 
Nevertheless, many of our diagnostic outcomes well corroborate with existing research as it also takes existing  
knowledge forward, which we discussed below:

We found that global wheat yield variability can be decoupled into and quantified by different unique modes, 
where, ~33% can be captured by the first four PCs (Fig. 2, the first 10 PCs account for ~67% of the total global 
yield variability. PC5 to PC10 are exhibited in Fig. S4). Each PC indicated a synergistic variability pattern in mul-
tiple national yields where a range of leading producers participated concurrently. These joint variability patterns 
in multi-national wheat yields could be simultaneously explained by specific local as well as larger-scale climate 
drivers. Previous year’s air temperature anomalies recorded over the wheat croplands as well as ENSO-type char-
acteristics across the tropical Pacific Ocean indicated dominating influence on PC1, and to some extent on PC2 
also. Concurrent-year-average PDSI and previous year’s air temperature variability was important for PC2, while 
concurrent-year air temperature for PC3, and a mixture of air temperature and precipitation variability for PC4 

Figure 4.  (a1) Geopotential Heights anomaly at 500hPa pressure level (Z500) in December, January and 
February (DJF) in the MVY over the North Hemisphere; (a2) the same in (a1) but in LVY. (figure generated 
using R (http://www.R-project.org/) version R 3.4.2, ggplot2 (https://cran.r-project.org/web/packages/ggplot2/
index.html) and Adobe Photoshop CS6 (https://www.adobe.com/products/photoshop.html).
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depending on the country of interest. Among all the recent literature we reviewed, Ray et al.6 was most com-
prehensive and recent global assessment to our knowledge, that used a sub-national yield dataset at the annual 
scales, and examined influence of local temperature and precipitation variability on region-specific wheat yield 
variations. They indicated that climate variability explained up to 35% of global wheat yield variability where 
temperature was the leading factor for wheat yields, in general, across the world. Adding on to Ray et al.6 and 
other relevant local studies31,32, our findings revealed that annual wheat yields concurrently vary across many 
nations but by a variety of proportions. One set of country examples is: Nepal, Syria, DR Congo, Kenya, Niger, 
Tanzania, Tunisia, Austria, Bulgaria, Denmark, France, Germany, Greece, Hungary, Portugal, Romania, Sweden, 
Switzerland, New Caledonia, Bolivia, Ecuador, Paraguay and Venezuela (Table S1, Fig. 2) where synergistic yield 
variability patterns were captured in PC1 (others are in Table S2). It was also exhibited in Ray et al. and oth-
ers6,31,32 that temperature variability in Western Europe is more crucial for wheat yields than precipitation varia-
bility, where the only exception was Spain where precipitation variability was important. Now, referring back to 
Table S1, our analysis also discovered that yield variability in Spain fell under PC4 category showing PDSI varia-
bility as the sole important factor. Broadening this discussion, Ray et al.6 also examined Australian wheat yields, 
which is mostly rainfed33,34, and hence it made sense that it would be largely explained by precipitation variability. 
We too denoted that, PC2 not only explained Australian yield variability at largest but also indicated PDSI varia-
bility being the most crucial local-scale climate driver. Furthermore, ATa at 1-year lag indicated second important 
factor for PC2. This is important as the planting and growing season of Australia and other countries in PC2 list 
starts in the previous year (crop years are in Table S6). United States, Turkey, and Iran also indicated concurrent 
yield variability with Australia within PC2, where PDSI variability (wet/dryness) during the concurrent year was 
also the most dominating factor and ATa the second. India was another good example to mention here, where 
our study once again corroborated well with Ray et al.6, indicating previous- and concurrent-year’s precipitation 
variability i.e. moisture being important within PC4 category. In addition, ENSO has much smaller influence on 
wheat production of India (Rabi crops is winter wheat) and China10, because wheat is heavily irrigated in these 
countries and hence irrigation explains the muted effect of climate modes on wheat.

Globally, 67% of the croplands are located in the areas where one or more climate oscillations show statis-
tically significant alterations in crop productivity during their strong phases21. Adding to that knowledge, we 
presented that there were around 47% of wheat-growing croplands experiencing some degree of local climate 
influence within the eighty-five producing nations, falling especially within PC1-4 category. Our diagnostic 
results also provided indications that previous year’s tropical Pacific Ocean SSTa was the most dominating stim-
ulus for world-wide wheat yields (PC1 and PC2), indicating that potential predictability in multi-national yields 
is possible and can be higher for PC1. We also found minor level of associations between PC1 and North Atlantic 
Oscillation (NAO); PC2 with the Scandinavian Pattern (SCA); PC3 with the Western Pacific (WP) pattern; and 
PC4 with the Tropical Southern Atlantic (TSA) pattern.

Knowledge of the regional connections between larger-scale climate and food crop production existed, but 
the global studies were really few10,21,22. Among those, the methods and the time spans were not fully consistent, 
which already in themselves caused differences in many of the results. In addition, many of these studies either 
examined crop-specific relationships, e.g.22,35 or studied aggregated yields of the major crop types21 or considered 
only one specific type of larger-scale driver22 or didn’t consider concurrent local climate statuses with larger-scale 
climate modes10. Heino et al.21 was the first global assessment, to our knowledge, which incorporated ENSO, 
IOD, and NAO altogether impacting 12 major crop types globally. They however took mean crop productivity 
at sub-national scales, not separating out crop-specific controls. Heino et al.21 indicated that 27% of global mean 
crop production is sensitive to ENSO variability, while 5% to IOD, and 20% to NAO, showcasing the dominance 
of ENSO on world-wide croplands. Anderson et al.10 was the most recent study reporting that ENSO, IOD, trop-
ical Atlantic variability (TAV), and NAO together accounted for 6% of globally aggregated wheat production 
variability but ENSO had a substantial influence on global crop production. Along that line, we discovered that 
it is ~11% of world-wide variability in wheat yields, as captured within PC1, those could be largely explained by 
ENSO variability alone.

Heino et al.21 further demonstrated that aggregated crop productivity (12 types) was majorly insensitive to 
ENSO/IOD/NAO in Eastern Europe, Central Asia, North America, Western Europe and Central America. This 
was where our study particularly found some differences, because PC1 and PC2 of world-wide wheat yield varia-
bility included countries in Europe, Asia, and North America showing significant associations with ENSO cycles, 
in various degrees (please refer further to the discussion section). Our study also corroborated well with Iizumi 
et al.22 that was an earlier global assessment to21 but solely included ENSO in their study. Iizumi et al.22 showed 
that ENSO phases influence wheat yields in many parts of South Asia, Latin America, and Southern Africa, both 
positively and negatively. The more recent study by Anderson et al.10 indicated that a developing ENSO event 
in boreal summer forces wheat production anomalies in Eurasia and a decaying event in the following spring 
produces anomalies in Australia and southeast South America. FAO36 specified observed impacts of 2015/16 
El-Nino on Latin America, Africa, and Asia. There were also other local case studies identifying ENSO’s impacts 
on crop production in the United States10,37, Zimbabwe38, Argentina39, China40, and Indonesia35. Among them, 
Anderson et al.10 also indicated Australian and East African crop yields as affected by IOD, Yuan and Yamagata24 
indicated stronger influence of the IOD than ENSO on Australian winter wheat yields, and also specifying the 
possible influence of SAM, for the first time, on Australia’s climate and yields. Whereas, our findings provided 
a different level of evidence indicating that a fraction of Australia’s annual wheat yield variability was largely 
explained by PC2 and that is primarily influenced by ENSO in the concurrent year (Fig. 2) and to some extent 
by SAM (Table S2), and indicating no significant influence of IOD. This was perhaps because IOD influence is 
more “localized”, as Yuan and Yamagata24 also pointed out, and ENSO development stage (timing) is crucial for a 
country’s crop production where a decaying stage in the spring is supposedly crucial for Australia10.
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Discussions
The importance of climate drivers arises from the influence on communities, businesses, and socio-economy41. 
Diagnosing the predictability of these effects in the observed data can help to anticipate future outcomes. Wheat 
is one of the principal cereal crops grown worldwide. Consumers in many countries are increasingly dependent 
on food imports and are thus exposed to yield variability in the major food-producing regions42. National gov-
ernments and commercial entities are therefore paying particular attention to the climate risk of wheat important 
for exporting as well as importing countries at large. Given the rising incidence of climatic extremes affecting 
food production11,43,44 it is important to anticipate larger volatility in food productivity45,46. Global crop models 
and yield monitoring (such as, the Global Information and Early Warning System of the Food and Agriculture 
Organization of the United Nations and the Famine Early Warning Systems Network) have been developed47,48, 
but, to our knowledge, only a few research yet have evaluated the common diagnostics and predictability poten-
tial of multi-national yields10, but neither looked into the changing characteristics of world-wide yield volatility. 
Here, we conducted a global overview of the concurrent variability and volatility of wheat crop yields using 
national-scale wheat yield datasets from 1961–2013 and climate variability, where ocean-atmospheric processes 
have often produced simultaneous global influence and altered climates around the crucial croplands from one 
year to the next.

Our research presented three major aspects for the science and broader readership. First, it provided insights 
on the synergistic variability of and diagnostics for multi-national wheat yields observed across the world. Second, 
it revealed a statistically significant and physically meaningful response of multi-national yields to larger-scale 
climate drivers at longer-range time scales, providing predictability potential. Third, it presented changes in global 
yield volatility characteristics.

First: We characterized concurrent variability of wheat yields using the rPCA approach which quantified 
unique variability patterns of world-wide yields into PCs and showed where and by how much, multiple national 
yields concurrently varied. The top four PCs demonstrated nearly 33% of the global yield variance where a 
total of 23 producing nations had dominating influence on PC1 (very high loading values), indicating substan-
tial co-variability of yields. Among them were the top producers such as Austria, Bulgaria, Denmark, France, 
Germany and Romania in Europe and Paraguay in South America where local climate influence was significant, 
indicating a dominance of air temperature variability at one-year lag period and concurrent-year PDSI variabil-
ity as the secondary influence. This echoed previous findings, especially of Ray et al.6 and Iizumi et al.22, which 
we discussed in the earlier section. Although more wheat croplands across the globe are rainfed than irrigated, 
dominance of temperature influence than moisture is particularly true in irrigated areas also where yields might 
be sensitive to temperature as it is a major driver of yield variability if a crop is sufficiently irrigated, whereas the 
soil moisture content can be more important under insufficient irrigation conditions22.

The importance of air temperature being the most important factor makes sense as it drives a farmer’s decision 
on wheat planting dates, everywhere across the world49. Winter wheat in the northern mid-latitudes is mostly 
planted in autumn (September and October, in general) when temperature is <4 °C) as winter wheat requires 
colder winter temperature for vernalization. Winter wheat begins to grow before the winter sets in, becomes 
dormant during the winter and then resumes growth in the following spring. Therefore, farmers choose a winter 
wheat planting date, according to temperature variability during the planting month, to also ensure that a proper 
amount of growth of the crop is achieved before winter dormancy sets in. As such, growing degree day accumu-
lation between planting date and the onset of cold temperature is an important climatic factor no matter how 
variable that is between different regions as the temperature at planting varies between regions. Austria, Bulgaria, 
Denmark, France, Germany, Romania, and Paraguay (hPCon1) grow winter wheat (Table S6). Farmers in these 
regions might be choosing planting dates by favorable temperature conditions, ensuring a critical growth stage of 
winter wheat in the following year, such as flowering. Hence, previous year’s air temperature’s importance for PC1 
for all these regions make sense to induce synergistic yield variability recorded in the following year (for further 
information about other countries and PCs, e.g. Australia, whose previous year’s climate indicators also showed 
importance in PC2 for the reason that planting and growing season falls in the previous year and then continues 
into the next year, please refer to Table S6). As such, farmers can better strategize in these countries to adjust 
their planting dates according to climate forecast information, to maintain or increase crop yields in the face of 
increasing climate variability and global climate change impacts. In addition to that, global crop models assume 
relationships between climate and planting dates too to simulate crop yields. Therefore, our research solidifies the 
importance to design multi-national strategies for climate adaptation.

We also indicated the critical importance of previous year’s ENSO on PC1, whereby European growers and 
Paraguay are most influenced and thereby their yield variations. This can be explained by the known influence on 
the extratropical winter atmosphere by events in the tropical regions50. Different climate studies have indicated 
that temperature and precipitation variability across North Atlantic/European regions and South America follow 
patterns consistent with ENSO-related larger-scale climate dynamics51–55, influencing crop productivity in these 
regions21,56. Anderson et al.10 explained that, in Europe, both ENSO and the NAO affect winter wheat yields, but 
ENSO does so by forcing NAO-like atmospheric states in the North Atlantic. This partly explains our findings 
relating to persistent ENSO associations with PC1 and its correlation with previous year’s air temperature var-
iability in Europe and Paraguay. Given the incredible level of ENSO predictability already achieved in seasonal 
forecasts, these climate diagnostics can offer the opportunity of predictability for PC1 (and PC2 to some extent) 
and hence co-varying yields in multiple nations during active ENSO years as well as assessing the risk of future 
changes.

Next: We also studied global yield volatility characteristics. We noted that extreme yield volatile years have 
become common during the recent most decades when the world has lost more on yields than gains. Five of the 
top ten such extreme years have occurred between 1990–2010 as the oceans also got warmer in the northern 
hemisphere, indicating the impacts of climate change. Previous studies have indicated that low-yield variability 
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potentially leads to57–59 higher food supply60,61, and prevent price spikes that have disproportionate adverse 
impacts on the globally food-insecure who are mostly farmers62,63. Ray et al.6 indicated that annual yield varia-
bility can be generally lower in the top crop producing regions due to higher yields but the major exception can 
be Australian wheat belt and the Great Plains states of the United States. Therefore, our findings set a new alarm 
by introducing many other prominent wheat growers along with Australia, including countries such as Paraguay, 
Austria, Turkey, and Argentina showing increasing volatility in yields and inducing declining world-wide wheat 
productivity. Regions with higher crop yield volatility can as such lead to disproportionate productivity failure 
and global food price spikes, especially if they are the major breadbaskets of the world. Even in regions with com-
paratively lower yields, fluctuations in crop production may impact local food security and farmers’ livelihoods. 
Our study therefore provides a global picture but keeping a local view intact of regions those could continue to 
threaten the wheat system at different scales.

Taken all the discussions above, our study is distinct compared to previous investigations that explored yield 
variability2,6,10,14,15,25,26 but without characterizing concurrent volatility in wheat yields together. We filled that 
crucial gap, using rPCA method that differs from traditional PCA as it removes existing outliers from the stand-
ardized crop yield datasets that would otherwise impact the PC outputs and thus is more “robust” (section SM3). 
In addition, we argue that rPCA may also have the ability to permit the interplay of important climatic determi-
nants as well as other socioeconomic factors64, such as fertilizer prices and oil prices, thereby disentangling global 
climatic teleconnections from other possible sources in PCs. While these global non-climatic drivers were not 
within the scope of our study, they may appear in other PCs.

Another original contribution of our work was the analysis of outliers, which our results suggested, can be 
useful to characterizing global yield volatility that may (or not) emerge from persistent yield variability patterns17, 
and mainly leading to world-wide yield losses and potential food insecurity. This strategy allows us to consider 
climatic inter-connections across the worlds’ wheat growing regions, and as such, we showed that it is not only 
international yields that can co-vary, largely due to climatic reasons, but extreme volatility can also appear in 
association with climatic teleconnection patterns, where the reasons of volatility may not be due to the same 
larger-scale influence corresponding to persistent variability.

Extreme weather can cause local crop failure and negatively affect socio-economies around the world, with 
implications for global market price and societal conflicts (Fig. 1). We showed, using significant association 
mapping, that, modes of international yield variability associates with larger-scale patterns, but, warmer global 
oceans associate best with extreme yield volatility-led losses across the globe. As such, multiple lines of evidence, 
including correlation and composite analysis support the hypothesis that multiple wheat-producing nations 
respond concurrently to larger-scale climate drivers, where, the most serious impacts occur in both big and small 
wheat-producing nations. Our observation that such synchronous volatility-led yield losses have become more 
frequent in the recent two decades is concerning and has implications for global food security planning and 
management. Given that wheat is a heavily traded commodity in the global market (http://www.fao.org/faostat/
en/#data) and that some of the most productive (and/or food insecure) regions across the globe observe higher 
degree of yield volatility as oceans warm65,66 and extremes become more extreme44,67, our study takes a meaning-
ful step forward, from existing knowledge, by discovering the common mechanisms by which multiple vulnerable 
nations can manage disastrous extreme climate events and yield responses and minimize significant impacts on 
international crop markets, society of the food insecure nations, and farmers at large.

Methods
All the datasets used, and methods considered to analyze them are included in Supplementary Text and cited in 
appropriate locations within the manuscript. The data, along with methods included in the codes will be made 
publicly available on a publicly accessible repository (https://datadb.noaacrest.org/public/gfsc-gws/).

Data availability
All the data, along with codes written to produce figures are made publicly available on a publicly accessible 
repository (https://datadb.noaacrest.org/public/gfsc-gws/).
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